EXERCICES SUPPLEMENTAIRES

Vous trouverez, ci-dessous, une liste d'exercices portant sur la description des mouvements. Un correctif de ceux-ci sera prochainement mis en ligne.

•						
Pendant la suspension des cours, je reste joignable par mail : spipers@ardelattre.be						
Bon travail et à bientôt !						
1) Un mobile ayant parcouru dans un seul sens une distance $d=45~m$ en une durée $T=45~s$ possède une vitesse moyenne v_{moy} dont la valeur est						
 1 m/s. 10 km/h. 3,6 km/h. 0,36 km/h. 						
2) Un mobile en mouvement le long d'un axe (Ox) orienté se déplace de la position x=40 m jusque à la position x=-15 m, et ce pendant une durée Δt =25 Sa vitesse moyenne est						
v_{mov} =2,2 m/s. v_{mov} =-1 m/s. v_{mov} =-2,2 m/s. v_{mov} =1 m/s. v_{mov} =1 km/h.						
3) Complète la définition suivante. La d'un mobile est l'ensemble des occupées au cours du						

par ce mobile.

4) Un observateur stationné le long d'une route voit passer deux véhicules en plein dépassement face à lui. Pour lui, les deux vitesses sont du même ordre de grandeur.

Par contre, du point de vue du conducteur qui est dépassé, sa perception de la vitesse de l'autre véhicule est qu'elle est...

légèrement supérieure à la sienne.
 égale à la sienne.
largement inférieure à la sienne.
Pour connaitre l'accélération instantanée d'un mobile en mouvement, il suffit

connaitre la variation de sa vitesse autour de cet instant.

connaître la variation de sa vitesse autour de cet instant.

connaître sa vitesse instantanée.

connaitre sa position.

6) Un cycliste s'élançant du podium de départ d'une épreuve de contre-la-montre démarre à une vitesse $v_0=0$ m/s pour atteindre au bout d'une durée $\Delta t=10$ s une vitesse $v_1=36$ km/h.

Si l'on cherche son accélération moyenne, sa valeur est...

```
o a_{moy}=10 \text{ m/s}^2.

o a_{moy}=1 \text{ m/s}^2.

o a_{moy}=3,6 \text{ m/s}^2.
```

7) Le référentiel idéal pour représenter les mouvements s'effectuant à la surface de la Terre est...

centré au centre du Soleil.
centré au centre de la Terre.
centré au centre de la Lune.

8	Complète	ما	teyte	suivant
O		ı	ICYIC	Suivaiii.

Lors d'un mouvement	s'effectuant en ligne droite, l'accélération	er
un instant donné s'éva	alue en calculant une accélération	sur une
durée très	utour de cet instant choisi.	

9) Un avion qui vole avec la vitesse v_1 =240 m/s accélère brutalement pour atteindre en une durée Δt =1,5 s une vitesse v_2 =300 m/s. Exprime son accélération a comme un multiple de g=10 m/s².

- o a=4g
- \circ a=40 m/s²
- o a=20g

10) Complète le texte suivant.

Deux automobiles se déplacent le long d'une route rectiligne. Leurs mouvements démarrent au même instant depuis différentes positions. Si leurs vecteurs vitesses pointent vers un même point tout en étant dans des sens différents, ces automobiles vont se alors que si leurs vecteurs vitesses pointent dans la même direction, il est possible qu'elles en fonction de leurs respectives.