

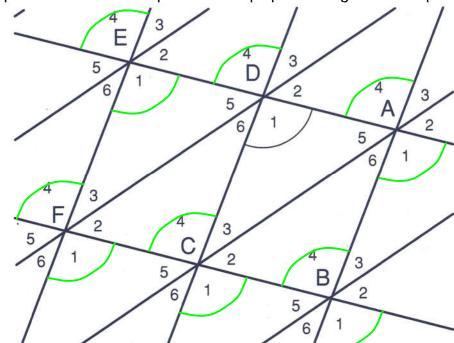
compétences à atteindre

- 1) Décoder des représentations géométriques.
- 2) Construire, à l'aide du matériel adéquat, des figures en respectant un programme de construction, en utilisant les propriétés des figures, en respectant des conditions.
- Déterminer l'amplitude des angles en se basant sur les propriétés des familles de figures, des droites remarquables et des angles remarquables.
- 4) Organiser une démarche pour déterminer la véracité d'un énoncé, pour dégager une propriété géométrique.
- 5) Nommer et situer les angles formés par deux droites coupées par une sécante.
- 6) Restituer et utiliser les propriétés des angles formés par deux parallèles coupées par une sécante.
- 7) Vérifier la véracité d'une proposition et justifier sa réponse par un contre-exemple, par une définition, par une règle ou par une propriété.

1) Activité 1 : Pavage et angles de même amplitude

a) Activité de découverte 1 :

Dans le pavage ci-dessous, colorie quelques angles qui ont la même amplitude que l'angle repéré. Comment est-il possible d'expliquer ces égalités d'amplitudes ?

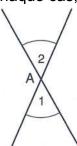


Par symétrie centrale de centre D ou par translation de vecteur DE ou par symétrie centrale de centre X.

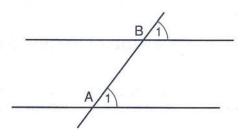
b) Activité de découverte 2 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

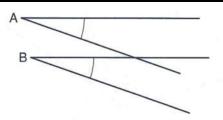
Dans chaque cas, que peux-tu dire de l'amplitude des angles marqués ? Explique.



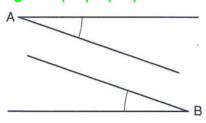
Les deux angles ont la même amplitude, en effet il existe une symétrie centrale de centre A qui applique l'angle \hat{A}_1 sur l'angle \hat{A}_2 . $|\hat{A}_1| = |\hat{A}_2|$



Les deux angles ont la même amplitude, en effet il existe une translation qui applique l'angle \hat{A}_1 sur l'angle \hat{B}_1 . $|\hat{A}_1| = |\hat{B}_1|$



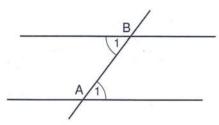
Les deux angles ont la même amplitude, en effet il existe une translation qui applique l'angle Â sur l'angle \hat{B} . $|\hat{A}| = |\hat{B}|$



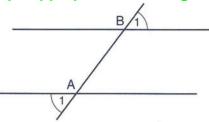
Les deux angles ont la même amplitude, en effet il existe une symétrie centrale de centre O qui applique l'angle À sur l'angle \widehat{B} . $|\widehat{A}| = |\widehat{B}|$



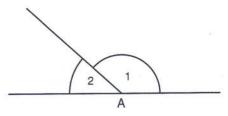
Ces deux angles forment un angle droit. La somme de leurs amplitudes vaut 90°. | \hat{A}_1 | + | \hat{A}_2 | = 90°



Les deux angles ont la même amplitude, en effet il existe une symétrie centrale de centre O qui applique \hat{A}_1 sur l'angle \hat{B}_1 . $|\hat{A}_1| = |\hat{B}_1|$



Les deux angles ont la même amplitude, en effet il existe une symétrie centrale de centre O qui applique l'angle Â₁ sur l'angle $\widehat{\mathbf{B}}_1$. $| \widehat{\mathbf{A}}_1 | = | \widehat{\mathbf{B}}_1 |$



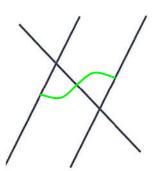
Ces deux angles forment un angle plat. La somme de leurs amplitudes vaut 180°. $|\hat{A}_1| + |\hat{A}_2| = 180^\circ$

2) Activité 2 : Représentation d'angles particuliers

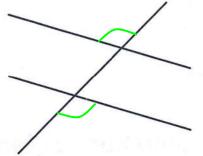
a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,

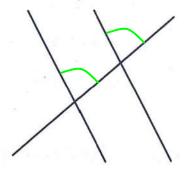
Représente deux angles : alternes internes



alternes externes



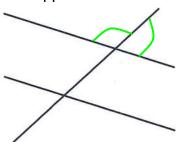
correspondants

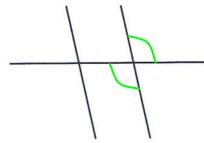


supplémentaires

opposés par le sommet

à côtés parallèles et de même sens

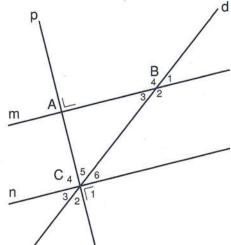






b) Activité de découverte 2 :

En observant la figure ci-dessous, complète les phrases.



Les angles \widehat{B}_1 et \widehat{C}_6 sont correspondants.

Les angles \hat{C}_6 et \hat{C}_3 sont opposés par le sommet.

Les angles \hat{C}_2 et \hat{C}_3 sont complémentaires.

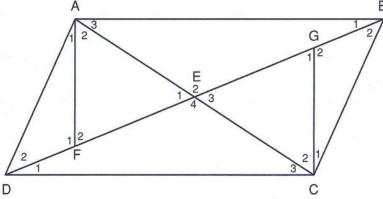
Les angles \widehat{B}_2 et $\widehat{\mathbf{B}}_3$ sont supplémentaires.

Les angles \hat{C}_3 et \hat{B}_1 sont alternes externes.

Les angles \widehat{B}_3 et \widehat{C}_6 sont alternes internes.

c) Activité de découverte 3 :

Dans le parallélogramme ABCD de centre E, on a tracé [AF] \bot [AB] et [CG] \bot [CD].



En observant le dessin, complète les phrases suivantes .

Les angles \widehat{A}_2 et \widehat{A}_3 sont complémentaires

Les angles \widehat{E}_2 et \widehat{E}_4 sont opposés par le sommet

Les angles \widehat{D}_1 et \widehat{B}_1 sont alternes-internes

Les angles \hat{F}_1 et \hat{F}_2 sont supplémentaires

Les angles \widehat{G}_2 et \widehat{F}_1 sont alternes-externes

Les angles \widehat{A}_3 et \widehat{C}_3 sont alternes-internes

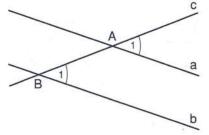
3) Activité 3 : Recherche d'amplitudes d'angles

a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

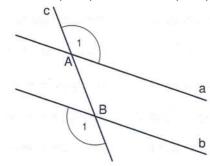
Sans mesurer, trouve l'amplitude de l'angle demandé. Justifie.

1) a // b
$$|\widehat{A}_1| = 40^{\circ} |\widehat{B}_1| = ?$$



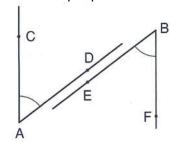
$$\widehat{A}_1$$
 et \widehat{B}_1 sont 2 angles correspondants $\Rightarrow |\widehat{A}_1| = |\widehat{B}_1|$
Or $|\widehat{A}_1| = 40^\circ \Rightarrow |\widehat{B}_1| = 40^\circ$

2) a // b
$$|\widehat{A}_1| = 130^{\circ} |\widehat{B}_1| = ?$$



$$\widehat{A}_1$$
 et \widehat{B}_1 sont 2 angles alternes-externes $\Rightarrow |\widehat{A}_1| = |\widehat{B}_1|$ Or $|\widehat{A}_1| = 130^\circ \Rightarrow |\widehat{B}_1| = 130^\circ$

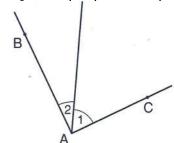
3) [AC // [BF [AD // [BE $|\widehat{A}| = 53^{\circ}$ $|\widehat{B}| = ?$



 \widehat{A} et \widehat{B} sont 2 angles à côtés parallèles et de sens contraire

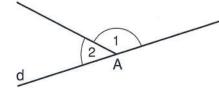
$$\Rightarrow$$
 $|\widehat{A}| = |\widehat{B}|$
Or $|\widehat{A}| = 53^{\circ} \Rightarrow |\widehat{B}| = 53^{\circ}$

4) [AB \perp [AC $|\hat{A}_2| = 30^{\circ} |\hat{A}_1| = ?$



 \widehat{A}_1 et \widehat{A}_2 sont des angles complémentaires $\Rightarrow |\widehat{A}_1| + |\widehat{A}_2| = 90^{\circ}$ Or $|\widehat{A}_2| = 30^{\circ} \Rightarrow |\widehat{A}_1| = 60^{\circ}$

5) $A \in d$ $|\widehat{A}_2| = 45^{\circ}$ $|\widehat{A}_1| = ?$



 \widehat{A}_1 et \widehat{A}_2 sont des angles supplémentaires $\Rightarrow |\widehat{A}_1| + |\widehat{A}_2| = 180^{\circ}$ Or $|\widehat{A}_2| = 45^{\circ} \Rightarrow |\widehat{A}_1| = 135^{\circ}$

b) Activité de découverte 2 :

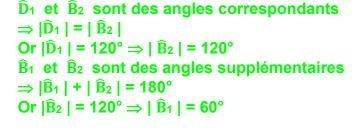
~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Détermine l'amplitude de l'angle \widehat{B}_1 en connaissant celle de l'angle \widehat{D}_1 .

1) a // b

// b
$$|\hat{D}_1| = 120^{\circ}$$

2) [AB] // [DC] et [AD] // [CB $\mid \widehat{D}_1 \mid$ = 70°



A 1 B

parallélogramme. $\Rightarrow |\widehat{D}_1| = |\widehat{B}_2|$ Or $|\widehat{D}_1| = 70^\circ \Rightarrow |\widehat{B}_2| = 70^\circ$

 $\widehat{\mathbf{D}}_1$ et $\widehat{\mathbf{B}}_2$ sont des angles opposés d'un

Or
$$|\widehat{D}_1| = 70^\circ \Rightarrow |\widehat{B}_2| = 70^\circ$$

 \widehat{B}_1 et \widehat{B}_2 sont des angles supplémentaires
 $\Rightarrow |\widehat{B}_1| + |\widehat{B}_2| = 180^\circ$
Or $|\widehat{B}_2| = 70^\circ \Rightarrow |\widehat{B}_1| = 110^\circ$

3) a // b $|\widehat{D}_1| = 80^{\circ}$

 \widehat{D}_1 et \widehat{B}_2 sont des angles correspondants. $\Rightarrow |\widehat{D}_1| = |\widehat{B}_2|$ Or $|\widehat{D}_1| = 80^\circ \Rightarrow |\widehat{B}_2| = 80^\circ$ \widehat{B}_1 et \widehat{B}_2 sont des angles supplémentaires $\Rightarrow |\widehat{B}_1| + |\widehat{B}_2| = 180^\circ$ Or $|\widehat{B}_2| = 80^\circ \Rightarrow |\widehat{B}_1| = 100^\circ$

4) a // b et c // d $|\hat{D}_1| = 50^{\circ}$

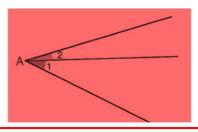
 $\begin{array}{l} \widehat{D}_1 \ \ \text{et} \ \ \widehat{A}_1 \ \ \text{sont des angles correspondants.} \\ \Rightarrow |\widehat{D}_1| = |\widehat{A}_1| \\ \text{Or} \ |\widehat{D}_1| = 50^\circ \Rightarrow |\widehat{A}_1| = 50^\circ \\ \widehat{B}_1 \ \ \text{et} \ \ \widehat{A}_1 \ \ \text{sont des angles correspondants} \\ \Rightarrow |\widehat{B}_1| = |\widehat{A}_1| \\ \text{Or} \ |\widehat{A}_1| = 50^\circ \Rightarrow |\widehat{B}_1| = 50^\circ \end{array}$

Angles particuliers

Angles adjacents

Définition : Deux angles adjacents sont deux angles qui ont le même sommet, un côté commun et sont situés de part et d'autre de ce côté commun.

Exemple : \hat{A}_1 et \hat{A}_2 sont deux angles adjacents.

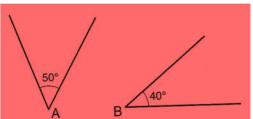


Angles complémentaires

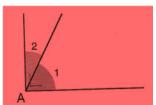
Définition : Deux angles complémentaires sont deux angles dont la somme

des amplitudes vaut 90°

Exemple : $|\hat{A}| + |\hat{B}| = 90^{\circ}$



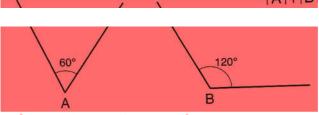
Propriété : Deux angles complémentaires adjacents forment un angle droit. $|\hat{A}_1| + |\hat{A}_2| = 90^{\circ}$



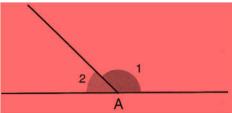
Angles supplémentaires

Définition : Deux angles supplémentaires sont deux angles dont la somme des amplitudes vaut 180°.

Exemple : $|\hat{A}| + |\hat{B}| = 180^{\circ}$



Propriété : Deux angles supplémentaires adjacents forment un angle plat. $|\hat{A}_1| + |\hat{A}_2| = 180^{\circ}$



Angles formés par deux droites sécantes Angles opposés par le sommet

Définition : Deux angles opposés par le sommet sont deux angles qui ont le

même sommet et leurs côtés dans le prolongement l'un de

l'autre.

Propriétés : Deux angles opposés par le sommet sont images l'un de l'autre

par une symétrie centrale.

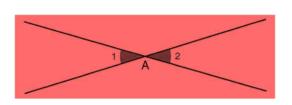
Deux angles opposés par le sommet ont la même amplitude.

 \hat{A}_1 et \hat{A}_2 sont opposés par le sommet

$$S_{A}(\hat{A}_{1}) = \hat{A}_{2}$$

$$\downarrow \downarrow$$

$$|\hat{A}_{1}| = |\hat{A}_{2}|$$



Angles formés par deux droites parallèles coupées par une sécante Angles correspondants

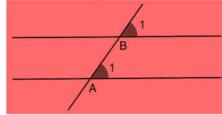
Propriétés : Deux angles correspondants sont images l'un de l'autre par une translation.

Deux angles correspondants ont la même amplitude.

 \hat{A}_1 et \hat{B}_1 sont deux angles correspondants

$$\downarrow t_{AB} (\hat{A}_1) = \hat{B}_1$$

$$\downarrow |\hat{A}_1| = |\hat{B}_1|$$



Angles alternes internes

Définition : Deux angles alternes internes sont deux angles situés de part et d'autre de la sécante et à l'intérieur des parallèles.

Propriétés : Deux angles alternes internes sont images l'un de l'autre par une symétrie centrale.

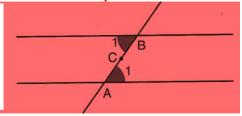
Deux angles alternes internes ont la même amplitude.

 \hat{A}_1 et \hat{B}_1 sont deux angles alternes internes

$$\mathbf{sc}(\hat{\mathbf{A}}_1) = \hat{\mathbf{B}}_1$$

$$\downarrow \downarrow$$

$$|\hat{\mathbf{A}}_1| = |\hat{\mathbf{B}}_1|$$



C est le milieu de [AB]

Angles alternes externes

Définition : Deux angles alternes externes sont deux angles situés de part et d'autre de la sécante et à l'extérieur des parallèles.

Propriétés : Deux angles alternes externes sont images l'un de l'autre par une symétrie centrale.

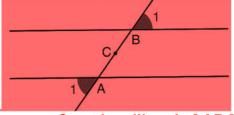
Deux angles alternes externes ont la même amplitude.

 \hat{A}_1 et \hat{B}_1 sont deux angles alternes externes

$$\mathbf{sc}(\hat{\mathbf{A}}_1) = \hat{\mathbf{B}}_1$$

$$\downarrow \downarrow$$

$$|\hat{\mathbf{A}}_1| = |\hat{\mathbf{B}}_1|$$



C est le milieu de [AB]

Angles à côtés parallèles

Angles à côtés parallèles et de même sens

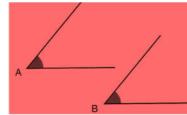
Propriétés : Deux angles à côtés parallèles et de même sens sont images l'un de l'autre par une translation.

Deux angles à côtés parallèles et de même sens ont la même amplitude.

et B sont deux angles à côtés parallèles et de même sens

$$t_{AB}(\hat{A}) = \hat{B}$$

$$\downarrow \downarrow$$

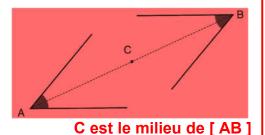


Angles à côtés parallèles et sens contraires

Propriétés : Deux angles à côtés parallèles et de sens contraires sont images l'un de l'autre

Deux angles à côtés parallèles et de sens contraires ont la même amplitude.

 et B sont deux angles à côtés parallèles et de sens contraires

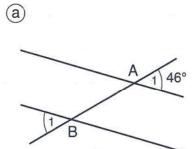


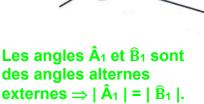
4) Exercices complémentaires

Série A:

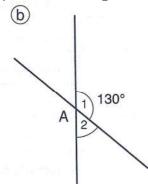
.~.~.~.~.

1) Dans chaque cas, détermine l'amplitude de l'angle marqué et justifie.

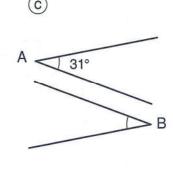




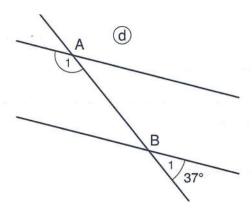
Or $|\hat{A}_1| = 46^\circ \Rightarrow |\hat{B}_1| = 46^\circ$



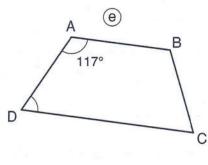
Les angles \hat{A}_1 et \hat{A}_2 sont des angles supplémentaires $\Rightarrow |\hat{A}_1| + |\hat{A}_2| = 180^{\circ}$ Or $|\hat{A}_1| = 130^{\circ} \Rightarrow |\hat{A}_2| = 50^{\circ}$



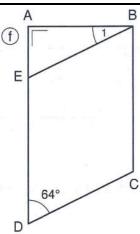
Les angles \hat{A} et \hat{B} sont des angles aigus à côtés parallèles et de sens contraires \Rightarrow | \hat{A} | = | \hat{B} |. Or | \hat{A} | = 31° \Rightarrow | \hat{B} | = 31°

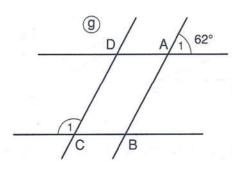


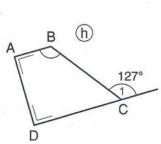
Les angles \widehat{B}_1 et \widehat{B}_2 sont des angles supplémentaires \Rightarrow | \widehat{B}_1 | + | \widehat{B}_2 | = 180° Or | \widehat{B}_1 | = 37° \Rightarrow | \widehat{B}_2 | = 143° Les angles \widehat{B}_2 et \widehat{A}_1 sont des angles alternes internes \Rightarrow | \widehat{B}_2 | = | \widehat{A}_1 | Or | \widehat{B}_2 | = 143° \Rightarrow | \widehat{A}_1 | = 143°



Les angles \hat{A}_1 et \hat{A}_2 sont des angles supplémentaires \Rightarrow | \hat{A}_1 | + | \hat{A}_2 | = 180° Or | \hat{A}_1 | = 117° \Rightarrow | \hat{A}_2 | = 63° Les angles \hat{A}_2 et \hat{D} sont des angles correspondants \Rightarrow | \hat{A}_2 | = | \hat{D} | Or | \hat{A}_2 | = 63° \Rightarrow | \hat{D} | = 63°







Les angles \widehat{D} et \widehat{B}_2 sont des angles aigus à côtés parallèles et de sens contraires (ou les angles opposés d'un parallélogramme) $\Rightarrow |\widehat{B}_2| = |\widehat{D}|$. Or $|\widehat{D}| = 64^\circ$

$$\Rightarrow |\widehat{B}_2| = |\widehat{D}|. \text{ Or } |\widehat{D}| = 64^{\circ}$$
$$\Rightarrow |\widehat{B}_2| = 64^{\circ}.$$

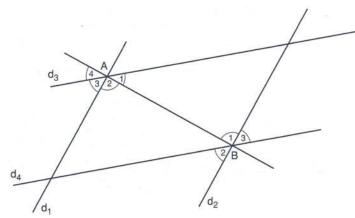
Les angles \widehat{B}_1 et \widehat{B}_2 sont des angles complémentaires

⇒
$$|\hat{B}_1| + |\hat{B}_2| = 90^\circ$$

Or $|\hat{B}_2| = 64^\circ ⇒ |\hat{B}_1| = 26^\circ$

Les angles Â₁ et Â₂ sont des angles supplémenatires \Rightarrow | \hat{A}_1 | + | \hat{A}_2 | = 180° Or $|\hat{A}_1| = 62^\circ \Rightarrow |\hat{A}_2| = 118^\circ$ Les angles \hat{A}_2 et \hat{C}_1 sont des angles obtus à côtés parallèles et de sens Contraires $\Rightarrow |\hat{A}_2| = |\hat{C}_1|$ Or $|\hat{A}_2| = 118^\circ \Rightarrow |\hat{C}_1| = 118^\circ$ Les angles \hat{C}_1 et \hat{B} sont des angles alternes internes $\Rightarrow |\hat{C}_1| = |\hat{B}|.$ Or $|\hat{C}_1| = 127^\circ \Rightarrow$ $|\hat{B}| = 127^{\circ}$

2) Si tu sais que $d_1 // d_2$, $d_3 // d_4$, $| \hat{A}_2 | = 90^\circ$ et $| \hat{A}_1 | = 39^\circ$, calcule l'amplitude des angles marqués.



$$|\hat{A}_4| = |\hat{A}_1| = 39^{\circ}$$

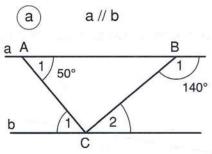
$$|\hat{A}_2| = |\hat{B}_1| = 90^{\circ}$$

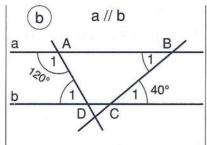
$$|\hat{A}_3| = 90^{\circ} - |\hat{A}_4| = 51^{\circ}$$

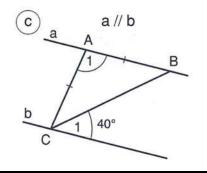
$$|\hat{A}_3| = |\hat{B}_2| = 51^{\circ}$$

$$|\hat{B}_3| = |\hat{B}_2| = 51^{\circ}$$

3) Calcule le plus simplement possible l'amplitude des angles marqués dans les figures ci-dessous.



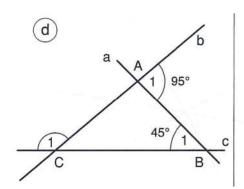


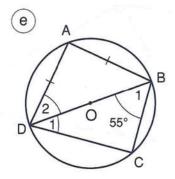


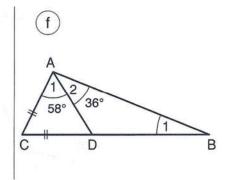
Les angles \hat{A}_1 et \hat{C}_1 sont des angles alternes internes \Rightarrow $|\hat{A}_1| = |\hat{C}_1|$ Or $|\hat{A}_1| = 50^\circ \Rightarrow |\hat{C}_1| = 50^\circ$ Les angles \hat{B}_1 et \hat{B}_2 sont des angles supplémentaires \Rightarrow $|\hat{B}_1| + |\hat{B}_2| = 180^\circ$ Or $|\hat{B}_1| = 140^\circ \Rightarrow |\hat{B}_2| = 40^\circ$ Les angles \hat{C}_2 et \hat{B}_2 sont des angles alternes internes \Rightarrow $|\hat{C}_2| = |\hat{B}_2|$. Or $|\hat{B}_2| = 40^\circ \Rightarrow |\hat{C}_2| = 40^\circ$

Les angles \widehat{B}_1 et \widehat{C}_1 sont des angles alternes internes $\Rightarrow |\widehat{B}_1| = |\widehat{C}_1|$ Or $|\widehat{C}_1| = 40^\circ \Rightarrow |\widehat{B}_1| = 40^\circ$ Les angles \widehat{A}_1 et \widehat{A}_2 sont des angles supplémentaires $\Rightarrow |\widehat{A}_1| + |\widehat{A}_2| = 180^\circ$ Or $|\widehat{A}_1| = 120^\circ \Rightarrow |\widehat{A}_2| = 60^\circ$ Les angles \widehat{A}_2 et \widehat{D}_1 sont des angles alternes internes $\Rightarrow |\widehat{A}_2| = |\widehat{D}_1|$. Or $|\widehat{A}_2| = 60^\circ \Rightarrow |\widehat{D}_1| = 60^\circ$

Les angles \widehat{B}_1 et \widehat{C}_1 sont des angles alternes internes \Rightarrow | \widehat{B}_1 | = | \widehat{C}_1 | Or | \widehat{C}_1 | = 40° \Rightarrow | \widehat{B}_1 | = 40° Le triangle ABC est isocèle en A \Rightarrow | \widehat{B}_1 | = | \widehat{C}_2 | Or | \widehat{B}_1 | = 40° \Rightarrow | \widehat{C}_2 | = 40° Dans le triangle ABC, | \widehat{A}_1 | + | \widehat{B}_1 | + | \widehat{C}_2 | = 180° Or | \widehat{B}_1 | = | \widehat{C}_2 | = 40° \Rightarrow | \widehat{A}_1 | = 180° - 40° - 40° = 100°





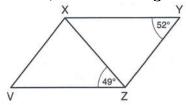


L'angle \hat{A}_1 est extérieur au triangle ABC \Rightarrow | \hat{A}_1 | = | \hat{B}_1 | + | \hat{C}_2 | Or | \hat{A}_1 | = 95° et | \hat{B}_1 | = 45° \Rightarrow | \hat{C}_2 | = 50° Les angles \hat{C}_1 et \hat{C}_2 sont des angles supplémentaires \Rightarrow | \hat{C}_1 | + | \hat{C}_2 | = 180° Or | \hat{C}_2 | = 50° \Rightarrow | \hat{C}_1 | = 130°

Le triangle ABD est inscrit dans un demicercle \Rightarrow ABD est rectangle en A \Rightarrow | \hat{A} | = 90°. De plus le triangle ABD est isocèle en A \Rightarrow | \hat{B}_2 | = | \hat{D}_2 | \Rightarrow | \hat{D}_2 | = 45°. Le triangle BDC est inscit dans un demi-cercle \Rightarrow BDC est rectangle en C \Rightarrow | \hat{C} | = 90°. Dans le triangle BDC, | \hat{B}_1 | + | \hat{C} | + | \hat{D}_1 | = 180°. Or | \hat{B}_1 | = 55° et | \hat{C}_1 | = 90° \Rightarrow | \hat{D}_1 | = 35°

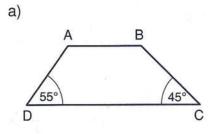
Le triangle ACD est isocèle en C \Rightarrow | \hat{A}_1 | = | \hat{D}_1 |. Or | \hat{A}_1 | = 58° \Rightarrow | \hat{D}_1 | = 58°. L'angle \hat{D}_1 est extérieur au triangle ABD \Rightarrow | \hat{D}_1 | = | \hat{A}_2 | + | \hat{B} |. Or | \hat{D}_1 | = 58° et | \hat{A}_2 | = 36° \Rightarrow | \hat{B} | = 22°

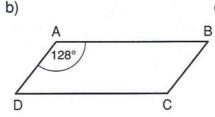
4) Le quadrilatère XYZV est un parallélogramme. Peux-tu, avec les renseignements fournis, dire si le triangle XYZ est rectangle ? Explique.

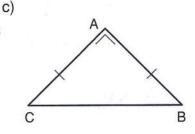


Le triangle XYZ n'est pas rectangle car $|\widehat{ZXY}| = 49^{\circ}$ et $|\widehat{XZY}| = 79^{\circ}$.

5) Trouve l'amplitude de tous les angles sans utiliser ton rapporteur et en expliquant ton raisonnement.





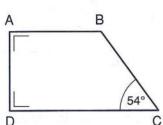


Les angles \hat{A} et \hat{D} sont adjacents à un côté non parallèle du trapèze $\Rightarrow |\hat{A}| + |\hat{D}| = 180^\circ$. Or $|\hat{D}| = 55^\circ \Rightarrow |\hat{A}| = 180^\circ$. Les angles \hat{C} et \hat{B} sont adjacents à un côté non parallèle du trapèze $\Rightarrow |\hat{C}| + |\hat{B}| = 180^\circ$ Or $|\hat{C}| = 45^\circ \Rightarrow |\hat{B}| = 180^\circ - 45^\circ = 135^\circ$

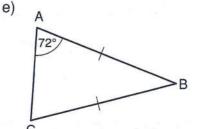
Dans le parallélogramme ABCD, les angles opposés ont la même amplitude \Rightarrow $|\hat{C}| = |\hat{A}| = 128^\circ$. Dans un quadrilatère, la somme des amplitudes des angles vaut $360^\circ \Rightarrow |\hat{D}| + |\hat{B}| = 360^\circ - 128^\circ - 128^\circ = 104^\circ$. Dans le parallélogramme ABCD, les angles opposés ont la même amplitude \Rightarrow $|\hat{D}| = |\hat{B}| = 104^\circ : 2 = 52^\circ$

Le triangle ACD est rectangle isocèle en A $\Rightarrow |\hat{A}| = 90^{\circ} \text{ et } |\hat{C}| = |\hat{B}| = 45^{\circ}.$

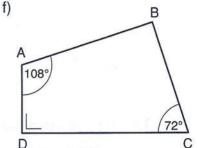
d)



Le trapèze ABCD est rectangle en A et D \Rightarrow | \hat{A} | = | \hat{D} | = 90°. Dans un quadrilatère, la somme des amplitudes des angles vaut $360^{\circ} \Rightarrow$ | \hat{B} | = 360° - 2 . 90° - 54° = 126° .

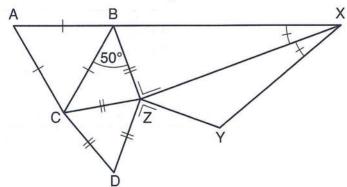


Le triangle ABC est isocèle en B \Rightarrow | \hat{C} | = | \hat{A} |. Or | \hat{A} | = 72° \Rightarrow | \hat{C} | = 72°. Dans un triangle, la somme des amplitudes des angles vaut 180° \Rightarrow | \hat{B} | = 180° - 2 . 72° = 36°



Dans le quadrilatère ABCD, \hat{C} est un angler droit $\Rightarrow |\hat{D}| = 90^{\circ}$. Dans un quadrilatère, la somme des amplitudes des angles vaut $360^{\circ} \Rightarrow |\hat{B}| = 360^{\circ} - 108^{\circ} - 72^{\circ} - 90^{\circ} = 90^{\circ}$

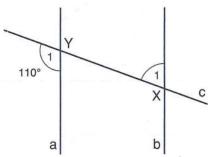
6) Calcule l'amplitude des angles du triangle XYZ si tu sais que les points A, B et X sont alignés.



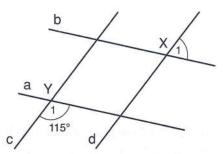
 $|\widehat{ZXY}|$ = $|\widehat{BXZ}|$ = 180° - 90° - 70° = 20° (triangle rectangle BXZ et triangle équilatéral ABC) $|\widehat{XZY}|$ = 360° - 2 . 90° - 60° - 80° = 40° (car CDZ est équilatéral et BCZ isocèle) $|\widehat{ZYX}|$ = 180° - 20° - 40° = 120° (calcul dans le triangle XYZ)

Série B:

1) Dans les figures ci-dessous, a // b et c // d. Calcule l'amplitude de l'angle \widehat{X}_1 et justifie tes résultats.

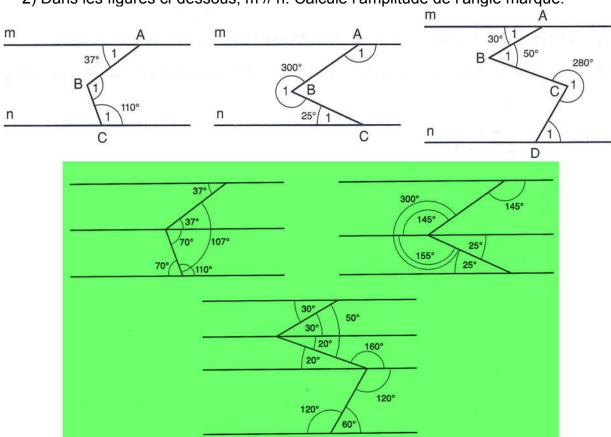


Les angles \widehat{Y}_1 et \widehat{X}_2 sont des angles correspondants \Rightarrow $|\widehat{Y}_1| = |\widehat{X}_2|$ Or $|\widehat{Y}_1| = 110^{\circ} \Rightarrow$ $|\widehat{X}_2| = 110^{\circ}$ Les angles \widehat{X}_1 et \widehat{X}_2 sont des angles supplémentaires $\Rightarrow |\widehat{X}_1| + |X_2| = 180^{\circ}$ Or $|\widehat{X}_2| = 110^{\circ} \Rightarrow |\widehat{X}_1| = 70^{\circ}$

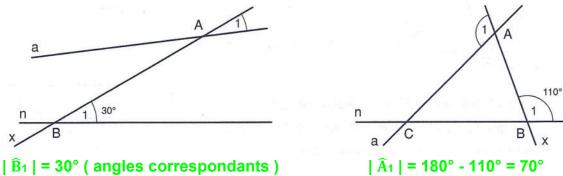


Les angles $\widehat{Y}1$ et $\widehat{X}2$ sont des angles à côtés parallèles et de même sens $\Rightarrow |\widehat{Y}_1| = |\widehat{X}_2|$ Or $|\widehat{Y}_1| = 115^\circ \Rightarrow$ $|\widehat{X}_2| = 115^\circ$ Les angles \widehat{X}_1 et \widehat{X}_2 sont des angles supplémentaires $\Rightarrow |\widehat{X}_1| + |\widehat{X}_2| = 180^\circ$ Or $|\widehat{X}_2| = 115^\circ \Rightarrow |\widehat{X}_1| = 65^\circ$

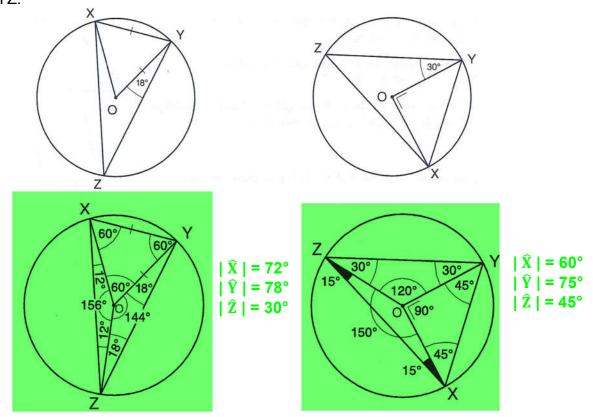
2) Dans les figures ci-dessous, m // n. Calcule l'amplitude de l'angle marqué.



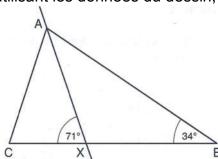
3) Trouve de l'angle marqué pour que les droites a et n soient parallèles.



4) En utilisant les données fournies par le dessin, calcule l'amplitude des angles du triangle XYZ.



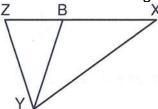
5) Dans le triangle ci-contre, la droite AX est la bissectrice de l'angle de sommet A. En utilisant les données du dessin, calcule Ĉ.



$$|\widehat{AXB}| = 180^{\circ} - 7^{\circ} = 109^{\circ}$$

 $\Rightarrow |\widehat{XAB}| = 180^{\circ} - 34^{\circ} - 109^{\circ} = 37^{\circ}$
 $|\widehat{CAB}| = 2 \cdot 37^{\circ} = 74^{\circ}$
 $|\widehat{C}| = 180^{\circ} - 34^{\circ} - 74^{\circ} = 72^{\circ}$

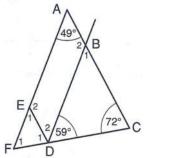
6) Le triangle XYZ est isocèle en X et YB est la bissectrice de l'angle de sommet Y. Quelle est la nature des triangles XBY et BZY si tu sais que $|\widehat{X}| = 36^{\circ}$?



$$|\hat{Z}| = |\widehat{ZYX}| = 72^{\circ} \Rightarrow |\widehat{ZYB}| = 36^{\circ} \text{ et } |\widehat{BYX}| = 36^{\circ}$$

Or $|\hat{X}| = 36^{\circ} \Rightarrow \text{triangle BYX est isocèle en B.}$
 $|\hat{Z}| = 72^{\circ} \text{ et } |\widehat{ZYB}| = 36^{\circ} \Rightarrow |\widehat{ZBY}| = 72^{\circ} \Rightarrow \text{triangle BZY est isocèle en Y}$

7) Voici une figure dans laquelle BD // AF et ED // AC. Recherche les amplitudes demandées.



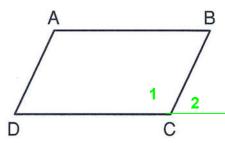
$$|\hat{B}_1| = 49^{\circ}$$
 $|\hat{B}_2| = 131^{\circ}$
 $|\hat{E}_1| = 49^{\circ}$
 $|\hat{E}_2| = 131^{\circ}$
 $|\hat{D}_1| = 72^{\circ}$
 $|\hat{D}_2| = 49^{\circ}$
 $|\hat{F}_1| = 59^{\circ}$

5) Activité 4 : Propriétés : démonstration

a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Démontre que deux angles consécutifs d'un parallélogramme sont supplémentaires.



Données : ABCD est un parallélogramme | AB | = | DC | et | BC | = | AD | AB // DC et BC // AD

Thèse :
$$|\hat{D}| + |\hat{C}| = 180^{\circ}$$

Démonstration : $\hat{\mathbf{D}}$ et $\hat{\mathbf{C}}$ sont deux angles consécutifs.

On prolonge [DC]. Les angles \hat{C}_1 et \hat{C}_2 forment un angle plat.

 $\Rightarrow |\hat{C}_1| + |\hat{C}_2| = 180^{\circ}.$

Les angles \widehat{D} et \widehat{C}_2 sont des angles correspondants

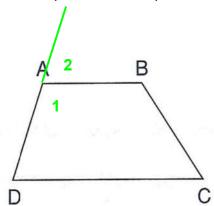
 $\Rightarrow |\widehat{\mathbf{D}}| = |\widehat{\mathbf{C}}_2|$

On remplace dans $|\hat{C}_1| + |\hat{C}_2| = 180^{\circ}$; $|\hat{C}_2|$ par $|\hat{D}|$

 \Rightarrow $|\hat{C}_1| + |\hat{D}| = 180^{\circ} \Rightarrow$ supplémentaires.

b) Activité de découverte 2 :

Démontre que dans le trapèze ci-dessous, les angles \widehat{A} et \widehat{D} sont supplémentaires.



Données : Trapèze ABCD AB // DC

Thèse : $|\hat{D}| + |\hat{A}| = 180^{\circ}$

Démonstration : $\widehat{\mathbf{D}}$ et $\widehat{\mathbf{A}}_1$ sont deux angles consécutifs.

On prolonge [DA]. Les angles \widehat{A}_1 et \widehat{A}_2 forment un angle plat.

 $\Rightarrow |\widehat{A}_1| + |\widehat{A}_2| = 180^{\circ}.$

Les angles \widehat{D} et \widehat{A}_2 sont des angles correspondants

 $\Rightarrow |\widehat{D}| = |\widehat{A}_2|$

On remplace dans $|\widehat{A}_1| + |\widehat{A}_2| = 180^\circ$; $|\widehat{A}_2|$ par $|\widehat{D}|$ $\Rightarrow |\widehat{A}_1| + |\widehat{D}| = 180^\circ \Rightarrow$ supplémentaires.

Trouve d'autres angles supplémentaires dans le trapèze ABCD.

$$|\hat{C}| + |\hat{B}| = 180^{\circ}$$

Enonce la propriété que tu viens de démontrer.

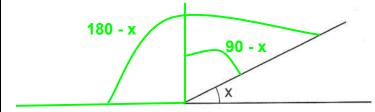
Dans un trapèze, les angles adjacents à un des côtés non parallèles sont supplémentaires.

c) Activité de découverte 3 :

Complète le tableau.

Amplitude de l'angle	69°	42°	85°
Supplément de l'angle	111°	128°	95°
Complément de l'angle	21°	38°	5°
Différence entre le supplément et le complément de l'angle	90°	90°	90°

Détermine graphiquement et par calcul la différence entre le supplément et le complément d'un angle d'amplitude x°.



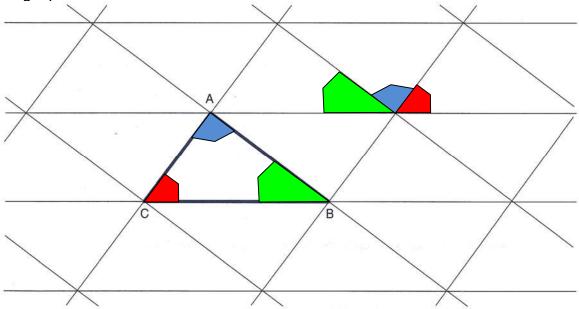
$$(180 - x) - (90 - x) = 180 - x - 90 + x = 90$$

6) Activité 5 : Somme des amplitudes des angles d'un triangle

a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

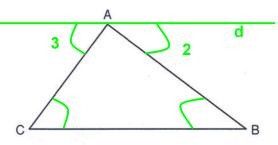
Tu sais peut être que dans un triangle, la somme des amplitudes des angles vaut 180°. Montre sur le pavage ci-dessous que les trois angles du triangle ABC peuvent former un angle plat.



b) Activité de découverte 2 :

~.~.~.~.~.~.~.~.~.~.~.~.

Démontre cette propriété.



Données : Triangle quelconque ABC

Thèse : $|\hat{A}| + |\hat{B}| + |\hat{C}| = 180^{\circ}$.

Démonstration : Par A, construis la droite d // BC, les angles \widehat{A}_2 et \widehat{A}_3 apparaissent. Par cette construction, \widehat{B} et \widehat{A}_2 sont alternes internes \Rightarrow $|\widehat{B}| = |\widehat{A}_2|$ \widehat{C} et \widehat{A}_3 sont alternes internes \Rightarrow $|\widehat{C}| = |\widehat{A}_3|$

Les angles \widehat{A}_1 , \widehat{A}_2 et \widehat{A}_3 forment un angle plat \Rightarrow

 $|\widehat{A}_1| + |\widehat{A}_2| + |\widehat{A}_3| = 180^{\circ}.$

Je remplace $|\widehat{A}_2|$ par $|\widehat{B}|$ et $|\widehat{A}_3|$ par $|\widehat{C}|$, on obtient alors $|\widehat{A}_1| + |\widehat{B}| + |\widehat{C}| = 180^\circ$.

Angles d'un triangle

Somme des amplitudes des angles intérieurs d'un triangle

Propriété : La somme des amplitudes des angles intérieurs d'un triangle

vaut 180°.

Données : Triangle quelconque ABC

 \hat{A}_1 , \hat{B} et \hat{C} angles intérieurs du triangle ABC

Thèse : $|\widehat{A}_1| + |\widehat{B}| + |\widehat{C}| = 180^\circ$.

Démonstration : Par A, trace la droite d // BC, les angles \widehat{A}_2 et \widehat{A}_3 apparaissent.

Par cette construction, \widehat{B} et \widehat{A}_2 sont alternes internes $\Rightarrow |\widehat{B}| = |\widehat{A}_2|$

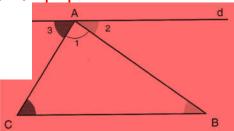
 \hat{C} et \hat{A}_3 sont alternes internes

 $\Rightarrow |\hat{C}| = |\hat{A}_3|$

Les angles \widehat{A}_1 , \widehat{A}_2 et \widehat{A}_3 forment un angle plat

 $\Rightarrow |\widehat{A}_1| + |\widehat{A}_2| + |\widehat{A}_3| = 180^{\circ}.$

En remplçant $|\widehat{A}_2|$ par $|\widehat{B}|$ et $|\widehat{A}_3|$ par $|\widehat{C}|$, l'égalité devient $|\widehat{A}_1| + |\widehat{B}| + |\widehat{C}| = 180^\circ$.



Amplitude d'un angle extérieur d'un triangle

Définition : Un angle extérieur d'un triangle est un angle formé par un côté et

le prolongement d'un autre côté issus d'un même sommet.

Propriété : L'amplitude d'un angle extérieur d'un triangle est égale à la somme des amplitudes des angles intérieurs non adjacents.

Données : ABC triangle quelconque

Â₂ angle extérieur au triangle ABC

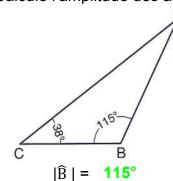
Thèse: $|\hat{A}_2| = |\hat{B}| + |\hat{C}|$

Démonstration : La somme des amplitudes des angles intérieurs d'un triangle vaut 180°. Â₁ et Â₂ sont deux angles adjacents supplémentaires ⇒ $|\hat{A}_1| + |\hat{A}_2| = 180^\circ$ En comparant les deux égalités, on a $|\hat{A}_1| + |\hat{A}_2| = |\hat{A}_1| + |\hat{B}| + |\hat{C}| \Rightarrow |\hat{A}_2| = |\hat{B}| + |\hat{C}|$

7) Activité 6 : Somme des amplitudes des angles d'un triangle

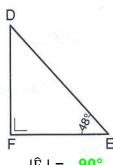
a) Activité de découverte 1 : ~,~,~,~,~,~,~,~,~,~,~,~,~,

Calcule l'amplitude des angles de ces triangles.



$$|\widehat{B}| = 115^{\circ}$$

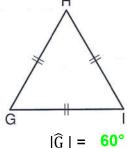
$$|\widehat{A}| = 27^{\circ}$$



$$|\hat{F}| = 90^{\circ}$$

$$|\widehat{E}| = 48^{\circ}$$

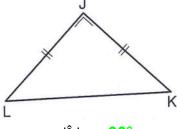
$$|\widehat{D}| = 42^{\circ}$$



$$\widehat{G} \mid = 60^{\circ}$$

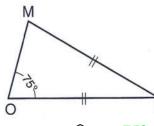
$$|\widehat{H}| = 60^{\circ}$$

$$|\hat{I}| = 60^{\circ}$$



$$|\hat{L}| = 45^{\circ}$$

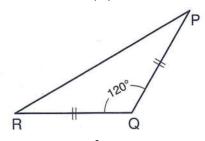
$$|\widehat{K}| = 45^{\circ}$$



$$|\hat{0}| = 75^{\circ}$$

$$|\widehat{M}| = 75^{\circ}$$

$$|\widehat{N}| = 42^{\circ}$$



$$|\hat{Q}| = 120^{\circ}$$

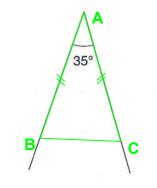
$$|\widehat{H}| = 30^{\circ}$$

$$|\hat{P}| = 30^{\circ}$$

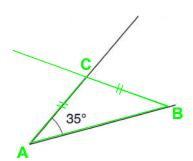
b) Activité de découverte 2 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Construis un triangle isocèle si tu sais qu'un des angles mesures 35°. Explique ton raisonnement en envisageant tous les cas possibles.



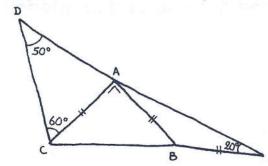
Nomme A le sommet de l'angle de 35°. Sue un des côtés de cet angle, placer le point B. Tracer un arc de cercle de centre A et de rayon | AB |. Cet arc de cercle coupe l'autre côté de l'angle en un point. Nommer ce point C. tracer le segment [BC]. Le triangle ABC est le triangle demandé.



Nommer A, le sommet de l'angle de 35°. Sur un des côtés de cet angle, placer un point B. Construire un angle de 35° ayant B comme sommet et [BA comme premier côté. Les deux demi droites tracées se coupent en un point. Nommer ce point C. Le triangle ABC est le triangle demandé.

c) Activité de découverte 3 :

1) Les points D, A, E sont-ils alignés ? Pourquoi ?



Puisque $|\hat{A}_1| = 70^\circ$, $|\hat{A}_2| = 90^\circ$ et $|\hat{A}_3| = 20^\circ$, alors $|\hat{A}_1| + |\hat{A}_2| + |\hat{A}_3| = 70^\circ + 90^\circ + 20^\circ = 180^\circ$.

L'angle est donc un angle plat et les points D, A et E sont alignés.

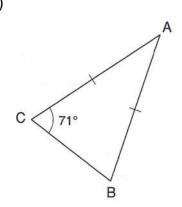
2) Les points C, B, E sont-ils alignés ? Pourquoi ? Puisque $|\widehat{B}_1|$ = 45° et $|\widehat{B}_2|$ = 140°, alors $|\widehat{B}_1|$ + $|\widehat{B}_2|$ = 45° + 140° = 185°. L'angle \widehat{B} n'est donc pas un angle plat et les points C, B et E ne sont pas alignés.

d) Activité de découverte 4 : ~.~.~.~.~.~.~.~.~.~.~.

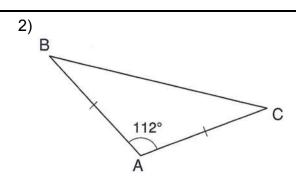
Détermine l'amplitude des angles de chaque triangle en expliquant ton raisonnement.

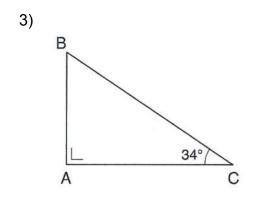
1)

 $=> |\widehat{A}| = 38^{\circ}$



| AB | = | AC | => ABC est isocèle en A => | \widehat{B} | = | \widehat{C} | Or | \widehat{C} | = 71° => | \widehat{B} | = 71° Dans le triangle ABC, la somme des amplitudes des angles intérieurs vaut 180° => | \widehat{A} | + | \widehat{B} | + | \widehat{C} | = 180° => | \widehat{A} | + 71° + 71° = 180° => | \widehat{A} | = 180° - 142°





| AB | = | AC | => ABC est isocèle en A
=>
$$|\widehat{B}|$$
 = $|\widehat{C}|$

Dans le triangle ABC, la somme des amplitudes des angles intérieurs vaut 180°

$$=> |\hat{A}| + |\hat{B}| + |\hat{C}| = 180^{\circ}$$

Or
$$|\widehat{A}| = 112^{\circ} => 112^{\circ} + |\widehat{B}| + |\widehat{C}| = 180^{\circ}$$

=> $|\widehat{B}| + |\widehat{C}| = 180^{\circ} - 112^{\circ}$
=> $|\widehat{B}| + |\widehat{C}| = 68^{\circ}$

Or
$$|\widehat{B}| = |\widehat{C}| => 2 |\widehat{B}| = 68^{\circ} => |\widehat{B}| = 34^{\circ} \text{ et } |\widehat{C}| = 34^{\circ}$$

 $|\widehat{A}|$ = 90° => le triangle ABC est rectangle en

Dans un triangle rectangle, les angles aigus sont complémentaires => $|\hat{B}|$ + $|\hat{C}|$ = 90°

Or
$$|\hat{C}| = 34^{\circ} => |\hat{B}| + 34^{\circ} = 90^{\circ}$$

=> $|\hat{B}| = 90^{\circ} - 34^{\circ}$
=> $|\hat{B}| = 56^{\circ}$

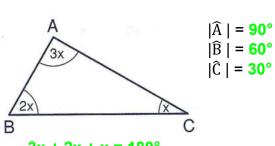
2)

e) Activité de découverte 5 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,

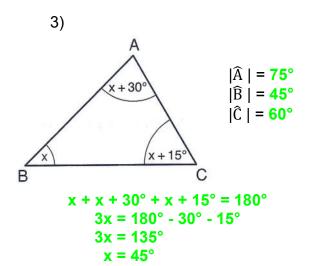
Détermine l'amplitude des angles de chaque triangle.

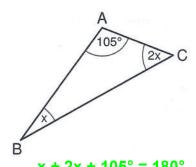
1)



$$3x + 2x + x = 180^{\circ}$$

 $6x = 180^{\circ}$
 $x = 30^{\circ}$

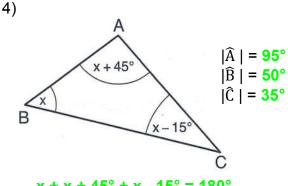




 $|\hat{A}| = 105^{\circ}$

 $|\hat{B}| = 25^{\circ}$

 $|\hat{C}| = 50^{\circ}$

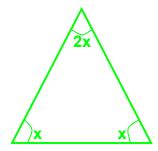


$$x + x + 45^{\circ} + x - 15^{\circ} = 180^{\circ}$$

 $3x = 180^{\circ} - 45^{\circ} + 15^{\circ}$
 $3x = 150^{\circ}$
 $x = 50^{\circ}$

f) Activité de découverte 6 :

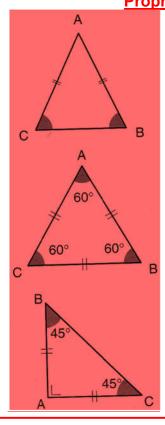
Construis un triangle isocèle si tu sais que l'amplitude de l'angle au sommet vaut le double de celle d'un des angles à la base.



$$x + x + 2x = 180^{\circ}$$

 $4x = 180^{\circ}$
 $x = 45^{\circ}$

Propriétés des angles de triangles particuliers



Les angles à la base d'un triangle isocèle ont la même amplitude.

ABC triangle isocèle en A ⇒ | B | = | C |

Les angles d'un triangle équilatéral ont la même amplitude : 60° ABC triangle équilatéral \Rightarrow | \hat{A} | = | \hat{B} | = | \hat{C} | = 60°

Les angles d'un triangle rectangle isocèle ont toujours pour amplitudes : 90°, 45° et 45°. ABC triangle rectangle isocèle en A \Rightarrow | \hat{A} | = 90° et | \hat{B} | = | \hat{C} | = 45°

8) Exercices complémentaires

Série A :

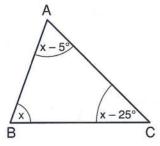
1) Complète le tableau ci-dessous.

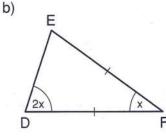
Â	B	Ĉ	Nature du triangle ABC			
52°	90°	38°	Rectangle en B			
76°	52°	52°	Isocèle en A			
64°	52°	64°	Isocèle en B			
52°	76°	52°	Isocèle acutangle en B			
38°	71°	71°	Isocèle acutangle			
22°	22°	136°	Isocèle obtusangle			
26°	26°	128°	Isocèle obtusangle en C			
45°	90°	45°	Isocèle rectangle en B			

81°	18°	81°	Isocèle acutangle en B
30°	30°	120°	isocèle

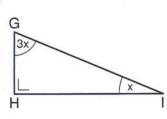
2) Détermine l'amplitude des angles des triangles proposés en tenant compte des renseignements fournis.

a)





C)



$$x + x - 5 + x - 25 = 180$$

$$3x = 180 + 30$$

$$x = 70$$

$$|\hat{A}| = 65^{\circ}$$

 $|\hat{B}| = 70^{\circ}$

$$2x + 2x + x = 180$$

$$5x = 180$$

$$x = 36$$

$$|\widehat{E}| = 72^{\circ}$$

$$|\widehat{D}| = 72^{\circ}$$

$$3x + x = 90$$

$$4x = 90$$

$$x = 22,5$$

3) Détermine l'amplitude des angles d'un triangle isocèle si tu sais que l'amplitude d'un angle à la base vaut le quadruple de celle de l'angle au sommet.

$$x + 4x + 4x = 180$$

x = 20 Angle au sommet : 20° Chacun des angles à la base : 80°

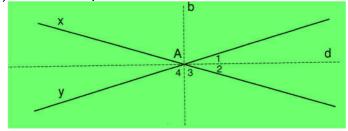
4) Détermine l'amplitude des angles d'un triangle rectangle si tu sais que l'amplitude d'un angle aigu vaut 27° de plus que celle de l'autre angle aigu.

$$x + x + 27 = 90$$

x = 31.5Les angles aigus du triangle rectangle mesurent 31,5° et 58,5°.

Série B:

1) Démontre que les bissectrices de deux droites sécantes sont perpendiculaires.



Données : Les droites x et y sécantes en A.

b et d. bissectrices des angles formés par x

et y

Thèse: b⊥d

Démonstration : Les angles Â₁, Â₂ , Â₃ et Â₄ sont adjacents et forment un angle plat \Rightarrow | \hat{A}_1 | + | \hat{A}_2 | + | \hat{A}_3 | + | \hat{A}_4 | = 180°

Or $|\hat{A}_1| = |\hat{A}_2|$ et $|\hat{A}_3| = |\hat{A}_4|$ (car b et d sont des bissectrices). En remplaçant dans la 1er égalité

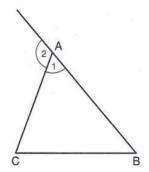
$$|\hat{A}_{2}| + |\hat{A}_{2}| + |\hat{A}_{3}| + |\hat{A}_{3}| = 180^{\circ} \Rightarrow 2 \cdot |\hat{A}_{2}| + 2 \cdot |\hat{A}_{3}| = 180^{\circ} \Rightarrow 2 \cdot (|\hat{A}_{2}| + |\hat{A}_{3}|) = 180^{\circ} \Rightarrow |\hat{A}_{2}| + |\hat{A}_{3}| = 90^{\circ} \Rightarrow b \perp d$$

9) Activité 7 : Angle extérieur d'un triangle

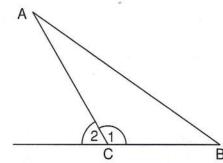
a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

1) Détermine l'amplitude de l'angle \hat{A}_2 si tu sais que $|\hat{B}| = 50^\circ$ et $|\hat{C}| = 70^\circ$



2) Détermine l'amplitude de l'angle \hat{C}_2 si tu sais que $|\hat{A}|$ = 25° et $|\hat{B}|$ = 35°



$$|\hat{A}| + |\hat{B}| + |\hat{C}_1| = 180^{\circ}$$

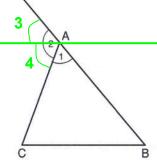
 $|\hat{C}_1| + 25^{\circ} + 35^{\circ} = 180^{\circ}$
 $|\hat{C}_1| = 120^{\circ}$
 $|\hat{C}_1| + |\hat{C}_2| = 180^{\circ}$
 $|\hat{C}_2| + 120^{\circ} = 180^{\circ}$
 $|\hat{C}_2| = 60^{\circ}$

3) Enonce une règle facile permettant de trouver l'amplitude demandée dans chaque cas. L'amplitude d'un angle extérieur d'un triangle est égale à la somme des amplitudes des angles intérieurs non adjacents.

b) Activité de découverte 2 :

[^]~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Démontre cette propriété.



Données : Soit ABC un triangle scalène

 \hat{A}_1 et \hat{A}_2 sont des angles supplémentaires

Thèse : $|\hat{A}_2| = |\hat{B}| + |\hat{C}|$

Démonstration : Par A, tracer la droite parallèle à BC.

Par cette construction, apparaissent les angles Â₃ et Â₄

tels que $|\hat{A}_2| = |\hat{A}_3| + |\hat{A}_4|$ (1)

Par construction:

 \hat{C} et \hat{A}_4 sont alternes internes => $|\hat{C}| = |\hat{A}_4|$

 \widehat{B} et \widehat{A}_3 sont correspondants => $|\widehat{B}| = |\widehat{A}_3|$

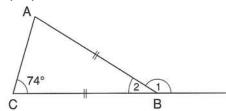
En remplaçant $|\hat{A}_3|$ par $|\hat{B}|$ et $|\hat{A}_4|$ par $|\hat{C}|$

l'égalité (1) devient $|\hat{A}_2| = |\hat{B}| + |\hat{C}|$

c) Activité de découverte 3 :

~.~.~.~.~.~.~.~.~.~.~.

En utilisant les renseignements fournis par le dessin, détermine l'amplitude de l'angle \widehat{B}_1 . Explique ton raisonnement.

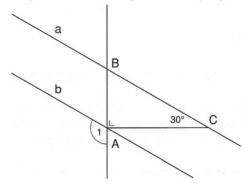


Le triangle ABC est isocèle en B => $|\hat{A}| = |\hat{C}|$ Or $|\hat{C}| => |\hat{A}| = 74^{\circ}$ L'angle \hat{B}_1 est un angle extérieur au triangle ABC => $|\hat{B}_1| = |\hat{A}| + |\hat{C}|$ Or $|\hat{C}| = |\hat{A}| = 74^{\circ} => |\hat{B}_1| = 148^{\circ}$

d) Activité de découverte 4 :

Carbont aug a // b at an utilizant les renacions

Sachant que a // b et en utilisant les renseignement fournis par le dessin, détermine l'amplitude de l'angle \hat{A}_1 . Explique tout ton raisonnement.



 \widehat{B}_1 est un angle extérieur au triangle ABC.

=>
$$|\widehat{B}_1| = |\widehat{A}_2| + |\widehat{C}|$$

=> $|\widehat{B}_1| = 90^{\circ} + 30^{\circ}$
=> $|\widehat{B}_1| = 120^{\circ}$

Les angles \widehat{B}_1 et \widehat{A}_1 sont correspondants.

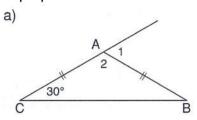
=>
$$|\widehat{B}_1| = |\widehat{A}_1|$$

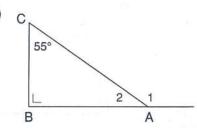
Or $|\widehat{B}_1| = 120^\circ => |\widehat{A}_1| = 120^\circ$

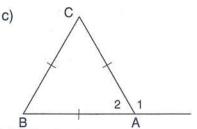
10) Exercices complémentaires

Série A : ~.~.~.~.

1) En utilisant les données fournies par chaque dessin, calcule l'amplitude de Â₁ en expliquant ton raisonnement.



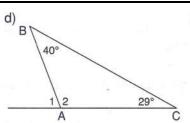


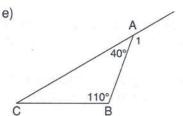


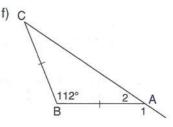
Le triangle ABC est isocèle en A \Rightarrow | \hat{B} | = | \hat{C} | Or | \hat{C} | = 30° \Rightarrow | \hat{B} | = 30° L'angle \hat{A}_1 est un angle extérieur au triangle ABC \Rightarrow | \hat{A}_1 | = | \hat{B} | + | \hat{C} |. Or | \hat{B} | = | \hat{C} | = 30° \Rightarrow | \hat{A}_1 | = 60°

Le triangle ABC est rectangle en B \Rightarrow $|\widehat{A}_2| + |\widehat{C}| = 90^\circ$ Or $|\widehat{C}| = 55^\circ \Rightarrow |\widehat{A}_2| = 90^\circ$ - $55^\circ = 35^\circ$ L'angle \widehat{A}_1 est un angle extérieur au triangle ABC $\Rightarrow |\widehat{A}_1| = |\widehat{B}| + |\widehat{C}|$. Or $|\widehat{B}| = 90^\circ$ et $|\widehat{C}| = 55^\circ$ $\Rightarrow |\widehat{A}_1| = 145^\circ$

Le triangle ABC est équilatéral \Rightarrow $| \widehat{A}_1 | + \Rightarrow$ $| \widehat{A}_2 | = | \widehat{B} | = | \widehat{C} | = 60^\circ$ L'angle \widehat{A}_1 est un angle extérieur au triangle ABC $\Rightarrow | \widehat{A}_1 | = | \widehat{B} | + | \widehat{C} |$. Or $| \widehat{B} | = 40^\circ$ et $| \widehat{C} | = 29^\circ$ $\Rightarrow | \widehat{A}_1 | = 120^\circ$

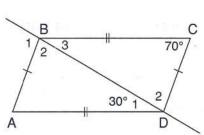






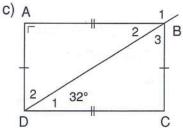
L'angles \widehat{A}_1 est un angle extérieur au triangle ABC $\Rightarrow |\widehat{A}_1| = |\widehat{B}| + |\widehat{C}|$. Or $|\widehat{B}| = |\widehat{C}| = 60^{\circ} \Rightarrow |\widehat{A}_1| =$ 120° Dans le triangle ABC, on sait que $|\widehat{A}| + |\widehat{B}| + |\widehat{C}|$ = 180°. Or $|\widehat{A}| = 40^\circ$ et $|\widehat{B}|$ = 110° \Rightarrow $|\widehat{C}| = 180^\circ - 40^\circ - 110^\circ = 30^\circ$ L'angle \widehat{A}_1 est un angle extérieur au triangle ABC \Rightarrow $|\widehat{A}_1| = |\widehat{B}| + |\widehat{C}|$. Or $|\widehat{B}| = 110^\circ$ et $|\widehat{C}| = 30^\circ$ \Rightarrow $|\widehat{A}_1| = 140^\circ$ Le triangle ABC est isocèle en B \Rightarrow | \widehat{A}_2 | = | \widehat{C} | = 180° - 112° : 2 = 34° Les angles \widehat{A}_1 et \widehat{A}_2 forment un angle plat \Rightarrow | \widehat{A}_1 | + | \widehat{A}_2 | = 180° Or | \widehat{A}_2 | = 34° \Rightarrow | \widehat{A}_1 | = 146°

2) En utilisant les données fournies par chaque dessin, calcule l'amplitude de \widehat{B}_1 en expliquant ton raisonnement.



b) A 110° D 2 B

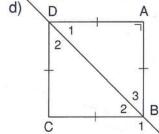
C

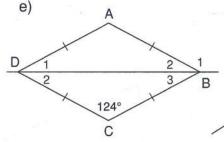


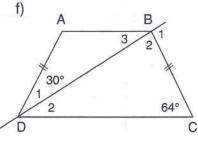
Dans le parallélogramme ABCD, les angles ooposés ont la même amplitude \Rightarrow $|\widehat{A}| = |\widehat{C}| = 70^\circ$. L'angle \widehat{B}_1 est un angle extérieur au triangle ABD \Rightarrow $|\widehat{B}_1| = |\widehat{A}|$ + $|\widehat{D}_1|$. Or $|\widehat{A}| = 70^\circ$ et $|\widehat{D}_1| = 30^\circ \Rightarrow |\widehat{B}_1| = 100^\circ$

Les angles \hat{A} et \hat{B}_2 sont des angles obtus à côtés patallèles \Rightarrow | \hat{A} | = | \hat{B}_1 |. Or | \hat{A} | = 110° \Rightarrow | \hat{B}_1 | = 110°

Les angles \widehat{B}_2 et \widehat{D}_1 sont des angles alternes internes \Rightarrow $|\widehat{D}_1| = |\widehat{B}_2|$. Or $|\widehat{D}_1| = 32^{\circ} \Rightarrow |\widehat{B}_2| = 32^{\circ}$ Les angles \widehat{B}_2 et \widehat{B}_1 sont supplémentaires \Rightarrow $|\widehat{B}_1| + |\widehat{B}_2| = 180^{\circ}$. Or $|\widehat{B}_2| = 32^{\circ}$ \Rightarrow $|\widehat{B}_1| = 180^{\circ} - 32^{\circ} = 148^{\circ}$







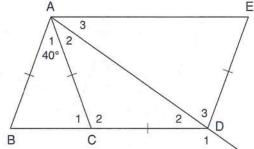
Le triangle DCB est rectangle isocèle en C $\Rightarrow |\hat{B}_2| = |\hat{D}_2| = 45^\circ$ et $|\hat{C}| = 90^\circ$. L'angle \hat{B}_1 est un angle extérieur au triangle DCB $\Rightarrow |\hat{B}_1| = |\hat{C}| + |\hat{D}_2|$. Or $|\hat{C}| = 90^\circ$ et $|\hat{D}_2| = 45^\circ \Rightarrow |\hat{B}_1| = 135^\circ$

Les angles opposés d'un losange ont la même amplitude \Rightarrow | \hat{A} | = | \hat{C} |. Or | \hat{C} | = 124° \Rightarrow | \hat{A} | = 124°. Le triangle DAB est isocèle en A \Rightarrow | \hat{B}_2 | = | \hat{D}_1 | = 180° - 124° : 2 = 28°. L'angle \hat{B}_1 est un angle extérieur au triangle DAB \Rightarrow | \hat{B}_1 | = | \hat{A} | + | \hat{D}_1 |. Or | \hat{A} | = 124° et

Le trapèze ABCD est isocèle \Rightarrow | \hat{D} | = | \hat{C} |. Or | \hat{C} | = 64° \Rightarrow | \hat{D} | = 64°. On sait que | \hat{D} | = | \hat{D}_1 | + | \hat{D}_2 |. Or | \hat{D}_1 | = 30° \Rightarrow | \hat{D}_2 | = 34°. L'angle \hat{B}_1 est un angle extérieur au triangle BDC \Rightarrow | \hat{B}_1 | = | \hat{C} | + | \hat{D}_2 |. Or | \hat{C} | = 64° et | \hat{D}_2 | = 34° \Rightarrow | \hat{B}_1 | = 98°

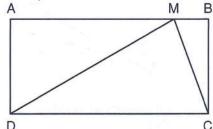
$$|\widehat{D}_1| = 28^{\circ} \Rightarrow |\widehat{B}_1| = 152^{\circ}$$

3) Sachant que ABDE est un parallélogramme et en utilisant les données fournies par le dessin, calcule l'amplitude des angles \widehat{D}_1 et \widehat{E} en expliquant ton raisonnement.



Le triangle ABC est isocèle en A \Rightarrow $\mid \widehat{B} \mid = \mid \widehat{C}_1 \mid = 70^\circ$. Les angles \widehat{C}_2 et \widehat{C}_1 sont supplémentaires $\Rightarrow \mid \widehat{C}_1 \mid + \mid \widehat{C}_2 \mid = 180^\circ$. Or $\mid \widehat{C}_1 \mid = 70^\circ \Rightarrow \mid \widehat{C}_2 \mid = 180^\circ - 70^\circ = 110^\circ$ Le triangle ACD est isocèle en C $\Rightarrow \mid \widehat{D}_2 \mid = \mid \widehat{A}_2 \mid = 180^\circ - 110^\circ$: 2 = 35°. Les angles \widehat{D}_2 et \widehat{D}_1 sont supplémentaires $\Rightarrow \mid \widehat{D}_1 \mid + \mid \widehat{D}_2 \mid = 180^\circ$. Or $\mid \widehat{D}_2 \mid = 35^\circ \Rightarrow \mid \widehat{D}_1 \mid = 180^\circ - 35^\circ = 145^\circ$. Dans le parallélogramme AEDB, les angles ooposés ont la même amplitude \Rightarrow $\mid \widehat{E} \mid = \mid \widehat{B} \mid = 70^\circ$.

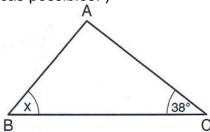
4) Si tu sais que le quadrilatère ABCD est un rectangle, que $|\widehat{DMC}| = 80^{\circ}$ et que $|\widehat{BCM}| = 20^{\circ}$, détermine l'amplitude de l'angle \widehat{ADM} .



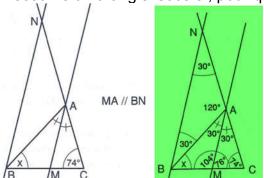
 $|\widehat{\text{MCD}}| = 70^{\circ} \Rightarrow |\widehat{\text{MDC}}| = 30^{\circ} \Rightarrow |\widehat{\text{ADM}}| = 60^{\circ}$

Série C:

- ~.~.~.~.~.
 - 1) a) Calcule l'amplitude de l'angle \widehat{BAC} du triangle ci-dessous, en fonction de x.
 - b) Pour quelle valeur de x, le triangle ABC est-il isocèle en A? en B, en C?
 - c) Pour quelles valeurs de x, le triangle ABC est-il rectangle ? (Tu envisages tous les cas possibles.)



- a) $| \widehat{BAC} | = 142^{\circ} x$
- b) Isocèle en A si x = 38° Isocèle en B si x = 104° Isocèle en C si x = 71°
- c) Rectangle en A si $x = 52^{\circ}$ Rectangle en B si $x = 90^{\circ}$
- 2) a) Si tu sais que la droite AM est la bissectrice de l'angle \hat{A} , calcule l'amplitude de tous les angles de la figure ci-dessous, pour $x = 46^{\circ}$.
 - b) Découvre un triangle isocèle ; pour quelle valeur de x, ce triangle est-il rectangle ?



- a) Voir le dessin
- b) | BNA | = 30° et | NBA | = 30° ⇒ le triangle NAB est isocèle en A. NBA sera rectangle isocèle en A si x = 16° (dans le triangle ABC : x = 180° 90° 74°)

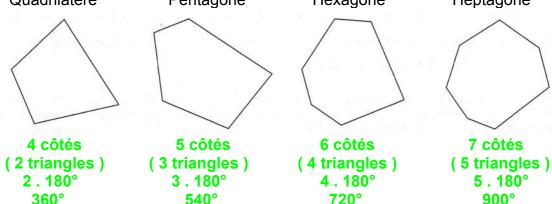
11) Activité 8 : Angles et polygones

a) Activité de découverte 1 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Détermine la somme des amplitudes des angles intérieurs des polygones suivants.

Quadrilatère Pentagone Hexagone Heptagone



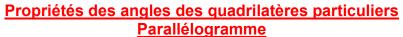
b) Activité de découverte 2 :

~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,

Détermine la somme des amplitudes des angles intérieurs d'un polygone à :

1) 10 côtés : 1440° 2) 12 côtés : 1800° 3) 20 côtés : 3240°

4) n côtés : (n - 2) . 180°



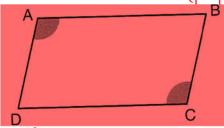
Les angles consécutifs d'un parallélogramme sont supplémentaires.

ABCD est un parallélogramme
$$\Rightarrow \begin{cases} |\hat{A}| + |\hat{B}| = 180^{\circ} \\ |\hat{B}| + |\hat{C}| = 180^{\circ} \\ |\hat{C}| + |\hat{D}| = 180^{\circ} \\ |\hat{A}| + |\hat{D}| = 180^{\circ} \end{cases}$$

Les angles et B sont deux angles consécutifs.

Les angles opposés d'un parallélogramme ont la même amplitude.

ABCD est un parallélogramme $\begin{cases} |\hat{A}| = |\hat{C}| \\ |\hat{A}| = |\hat{C}| \end{cases}$

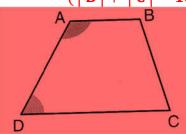


Les angles et Ĉ sont deux angles opposés.

Trapèze

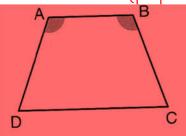
Les angles adjacents à un des côtés non parallèles d'un trapèze sont supplémentaires.

ABCD est un trapèze \Rightarrow $\left\{ \begin{vmatrix} \hat{A} \\ \end{vmatrix} + \begin{vmatrix} \hat{D} \\ \end{vmatrix} = 180^{\circ} \right\}$ $|\widehat{B}| + |\widehat{C}| = 180^{\circ}$ (AB // DC)



Les angles \hat{A} et \hat{D} sont les angles adjacents à [AD]. Les angles adjacents à une base d'un trapèze isocèle ont la même amplitude.

ABCD est un trapèze isocèle $\Rightarrow \begin{cases} |\hat{A}| = |\hat{B}| \\ |\hat{D}| = |\hat{C}| \end{cases}$ (AB // CD)



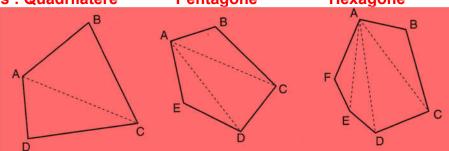
Les angles \hat{A} et \hat{B} sont les angles adjacents à la base [AB]. Propriétés des angles des polygones

La somme des amplitudes des angles d'un polygone à n côtés vaut (n-2).180°

Exemples : Quadrilatère

Pentagone

Hexagone



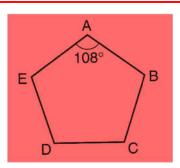
$$|\hat{A}| + |\hat{B}| + |\hat{C}| + |\hat{D}| = 180^{\circ} |\hat{A}| + |\hat{B}| + |\hat{C}| + |\hat{D}| + |\hat{E}| = 180^{\circ} |\hat{A}| + |\hat{B}| + |\hat{C}| + |\hat{D}| + |\hat{E}| + |\hat{F}| = 180^{\circ}$$

 $= (4 - 2) .180^{\circ} = (5 - 2) .180^{\circ} = (6 - 2) .180^{\circ}$
 $= 2 .180^{\circ} = 3 .180^{\circ} = 4 .180^{\circ}$
 $= 360^{\circ} = 540^{\circ} = 720^{\circ}$

L'amplitude d'un angle d'un polygone régulier à n côtés vaut $\frac{(n-2).180^{\circ}}{n}$

Exemple :
$$|\hat{A}| = \frac{(5-2).180^{\circ}}{5}$$

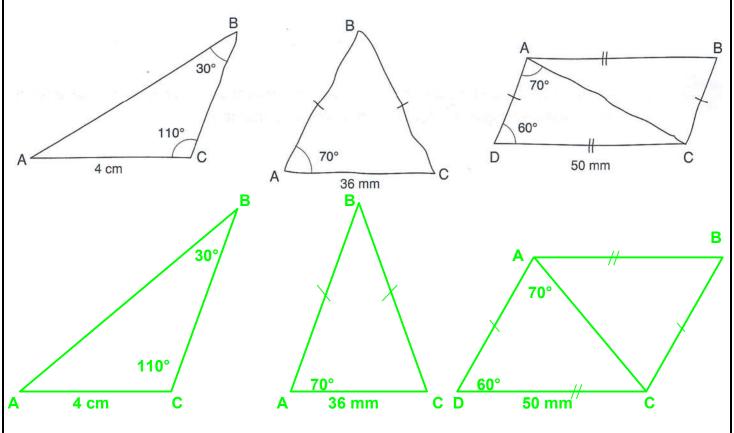
= $\frac{3.180^{\circ}}{5}$
= $\frac{540^{\circ}}{5}$
= 108°



12) Activité 9 : Exercices de construction

a) Activité de découverte 1 : ~.~.~.~.~.~.~.~.~.~.

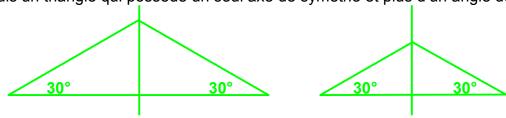
Les figures ci-dessous sont dessinées à main levée ; reproduis-les en vraie grandeur sur une feuille annexe.



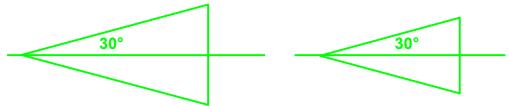
b) Activité de découverte 2 : ~.~.~.~.~.~.~.~.~.~.

Parmi les problèmes de construction ci-dessous, détermine ceux pour lesquels la solution est unique. (Réponds sur une feuille annexe.)

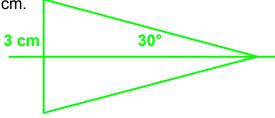
1) Construis un triangle qui possède un seul axe de symétrie et plus d'un angle de 30°.



2) Construis un triangle qui possède un seul axe de symétrie et un seul angle de 30°.



3) Construis un triangle qui possède un seul axe de symétrie, un seul angle de 30° et un seul côté de 3 cm.



4) Construis un triangle qui possède un seul axe de symétrie, un seul angle de 30° et plus d'un côté de 3 cm. 3 cm

5) Construis un triangle qui possède un seul axe de symétrie et plus d'un côté de 3 cm.

6) Construis un triangle qui possède un seul axe de symétrie et un seul côté de 3 cm.

Pavage du plan

Quels sont les polygones réguliers qui peuvent paver le plan,

Il n'y en a que trois : le triangle équilatéral, le carré et l'hexagone régulier. Pourquoi ?

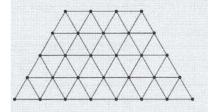
L'amplitude d'un angle intérieur d'un polygone régulier de n côtés vaut 180°. $\frac{n-2}{n}$.

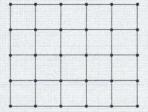
On peut donc établir le tableau ci-dessous.

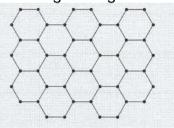
Nombre de côtés	3	4	5	6	7	8	9	10
Amplitude d'un angle	60°	90°	108°	120°	128,5°	135°	140°	144°

Remarque : L'amplitude d'un angle intérieur sera toujours inférieure à 180° car l'expression $\frac{n-2}{n}$ est toujours inférieur à 1.

Pour qu'un polygone régulier pave le plan, il faut que l'amplitude d'un de ses angles intérieurs divise 360. Les seules valeurs possibles sont 60°, 90° et 120°, ce qui correspond respectivement au triangle équilatéral, au carré et à l'hexagone régulier.



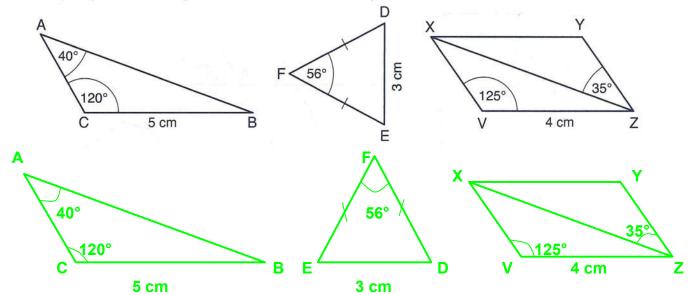




13) Exercices complémentaires

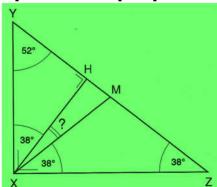
Série A : ~.~.~.~.

1) Reproduis les figures ci-dessous en vraie grandeur.



Série B :

1) Construis un triangle XYZ rectangle en X si tu sais que $|\hat{Z}| = 38^{\circ}$. Trace la médiane [XM] et la hauteur [XH]. Calcule l'amplitude de l'angle $|\widehat{HXM}|$.



$$|\widehat{XYZ}| = 90^{\circ} - 38^{\circ} = 52^{\circ}$$

 $|\widehat{YXH}| = 90^{\circ} - 52^{\circ} = 38^{\circ}$
 $|\widehat{MXZ}| = 38^{\circ}$ car XMZ est isocèle (M milieu de l'hypoténuse [YZ] : | XM | = |MZ |.) Il s'agit du théorème de la médiane !
 $|\widehat{HXM}| = 90^{\circ} - 38^{\circ} - 38^{\circ} = 14^{\circ}$

2) Construis un triangle XYZ rectangle en X si tu sais que $|\hat{Z}|$ = 48°. Trace la médiane [XM] et la bissectrice issue de l'angle Y qui coupe [XZ] en V. La médiane et la bissectrice se coupent au point T. Calcule l'amplitude de l'angle $|\hat{X}$ | .

